|
板凳

楼主 |
发表于 2015-4-8 10:19:32
|
只看该作者
History
The first publication which described the basic features of the KMC method (namely using a cumulative function to select an event and a time scale calculation of the form 1/R) was by Young and Elcock in 1966 (Young 1966). The residence-time algorithm was also published at about the same time in (Cox 1965).
Apparently independent of the work of Young and Elcock, Bortz, Kalos and Lebowitz (Bortz 1975) developed a KMC algorithm for simulating the Ising model, which they called the n-fold way. The basics of their algorithm is the same as that of (Young 1966), but they do provide much greater detail on the method.
The following year Dan Gillespie published what is now known as the Gillespie algorithm to describe chemical reactions (Gillespie 1976). The algorithm is similar and the time advancement scheme essentially the same as in KMC.
There is as of the writing of this (June 2006) no definitive treatise of the theory of KMC, but Fichthorn and Weinberg have discussed the theory for thermodynamic equilibrium KMC simulations in detail in (Fichthorn 1991). A good introduction is given also by Art Voter (Voter 2005),[1] and by A.P.J. Jansen (Jansen 2003),[2], and a recent review is (Chatterjee 2007) or (Chotia 2008).
In March, 2006 the, probably, first commercial software using Kinetic Monte Carlo to simulate the diffusion and activation/deactivation of dopants in Silicon and Silicon-like materials is released by Synopsys, reported by Martin-Bragado et al. (Martin-Bragado 06).
Varieties of KMC
The KMC method can be subdivided by how the objects are moving or reactions occurring. At least the following subdivisions are used:
Lattice KMC (LKMC) signifies KMC carried out on an atomic lattice. Often this variety is also called atomistic KMC, (AKMC). A typical example is simulation of vacancy diffusion in alloys, where a vacancy is allowed to jump around the lattice with rates that depend on the local elemental composition
Object KMC (OKMC) means KMC carried out for defects or impurities, which are jumping either in random or lattice-specific directions. Only the positions of the jumping objects are included in the simulation, not those of the 'background' lattice atoms. The basic KMC step is one object jump.
Event KMC (EKMC) or First-passage KMC (FPKMC) signifies an OKMC variety where the following reaction between objects (e.g. clustering of two impurities or vacancy-interstitial annihilation) is chosen with the KMC algorithm, taking the object positions into account, and this event is then immediately carried out (Dalla Torre 2005, Oppelstrup 2006).
External links
3D lattice kinetic Monte Carlo simulation in 'bit language'
http://www.roentzsch.org/RealBit/
KMC simulation of the Plateau-Rayleigh instability
http://www.roentzsch.org/Rayleigh/
KMC simulation of f.c.c. vicinal (100)-surface diffusion
http://www.roentzsch.org/SurfDiff/
References
(Cox 1965): D.R. Cox and H.D. Miller, The Theory of Stochastic Processes (Methuen, London, 1965, pp 6–7.
(Young 1966): W. M. Young and E. W. Elcock, Proceedings of the Physical Society 89 (1966) 735.
(Bortz 1975): A. B. Bortz and M. H. Kalos and J. L. Lebowitz, Journal of Computational Physics 17 (1975) 10 Journal of Computational Physics 17 (1975) 10 (needs subscription)
(Gillespie 1976): D. T. Gillespie, Journal of Computational Physics 22 (1976) 403
(Fichthorn 1991): K. A. Fichthorn and W. H. Weinberg, Journal of Chemical Physics 95 (1991) 1090 (needs subscription)
(Meng 1994): B. Meng and W. H. Weinberg, J. Chem. Phys. 100, 5280 (1994).
(Meng 1996): B. Meng, W.H. Weinberg, Surface Science 364 (1996) 151-163.
(Jansen 2003): A.P.J. Jansen, An Introduction To Monte Carlo Simulations Of Surface Reactions, Condensed Matter, abstract cond-mat/0303028.
(Dalla Torre 2005): J. Dalla Torre, J.-L. Bocquet, N.V. Doan, E. Adam and A. Barbu, Phil. Mag. 85 (2005), p. 549.
(Voter 2005): A. F. Voter, Introduction to the Kinetic Monte Carlo Method, in Radiation Effects in Solids, edited by K. E. Sickafus and E. A. Kotomin (Springer, NATO Publishing Unit, Dordrecht, The Netherlands, 2005).
(Opplestrup 2006): T. Opplestrup, V. V. Bulatov, G. H. Gilmer, M. H. Kalos, and B. Sadigh, First-Passage Monte Carlo Algorithm: Diffusion without All the Hops, Physical Review Letters 97, 230602 (2006)
(Chatterjee 2007): A. Chatterjee and D. G. Vlachos, An overview of spatial microscopic and accelerated kinetic Monte Carlo methods, J. Computer-Aided Mater. Des. 14, 253 (2007).
(Chotia 2008): A. Chotia, M. Viteau, T. Vogt, D. Comparat and P. Pillet, Kinetic Monte Carlo modelling of dipole blockade in Rydberg excitation experiment, New Journal of Physics 10 pages 045031 (2008)
(Martinez 2008): E.Martinez, J.Marian, M.H.Kalos, J.M.Perlado, Synchronous Parallel Kinetic Monte Carlo for Continuum Diffusion-Reaction Systems, Journal of Computational Physics, Volume 227, Issue 8, 1 April 2008, Pages 3804-3823
(Martin-Bragado 2008): I. Martin-Bragado, S. Tian, M. Johnson, P. Castrillo, R. Pinacho, J. Rubio and M. Jaraiz, Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo. Nuclear Instruments and Methods in Physics Research B, 253 (2006) 63-67 (needs subscription.
(Slepoy 2008): A. Slepoy, A. P. Thompson, and S. J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks, Journal of Chemical Physics, Volume 128, Issue 20, December 2007, Page 205101
本帖转自52mc论坛 |
|