核聚变反应堆:惯性约束 在美国劳伦斯利弗莫尔实验室的国家点火设施(NIF)中,科学家们正在试验用激光束来诱发聚变。在NIF设备中,192条激光束将聚焦于一个直径为10米的靶室上的一点,这个靶室称为黑体辐射空腔。根据科学和工程百科全书,黑体辐射空腔是指“腔壁与腔内的辐射能量达到平衡的腔”。 惯性约束核聚变过程 在靶室内部的焦点上,将有一个豌豆大小的氘-氚粒状物,其外侧包有一个小型塑料圆筒。激光的能量(180万焦)将加热圆筒,并生成X射线。 在高温和辐射的作用下,粒状物将转化为等离子体,且压力不断升高,直至发生聚变。核聚变反应寿命很短,大约只有百万分之一秒,但它释放的能量是引发核聚变 所需能量的50到100倍。在这种类型的反应堆中,需要相继点燃多个目标,才能产生持续的热量。据科学家估计,每个目标的成本可控制在0.25美元左右, 从而大大降低了核电厂的成本。 核聚变点火过程 与磁约束核聚变反应堆类似,惯性约束核聚变中的能量也将被转移至热交换器生成蒸气,进而通过蒸气来发电。 核聚变的应用 核聚变的主要应用是发电,它可为后代提供安全、清洁的能源,与目前的核裂变反应堆相比,它具有以下几个优点: 燃料供应充足——氘可直接从海水中提取,大量的氚可从核反应堆本身的锂中获得,而锂又广泛存在于地壳中。核裂变所需的铀非常稀少,必须经过开采和浓缩后才能用于反应堆。 安全——与核裂变反应堆相比,核聚变所需的燃料较少。这样便避免了不可控的能量释放。与人类生存的自然界相比,大多数核聚变反应堆释放的辐射并不算多。 清洁——核电厂(无论是裂变还是聚变)不靠燃烧发电,不会造成空气污染。 核废物更少——核聚变反应堆不像核裂变反应堆那样会生成大量的核废物,因而处理起来会更加容易。另外,核裂变所产生的废物属于武器级的核材料,而核聚变的废物则没有这样的危险。 目前,NASA正在研制一种小型的核聚变反应堆,用于为深空火箭提供动力。核聚变推进器具有无限的燃料供应(氢),其效率更高,可令火箭飞得更快。 冷核聚变 1989年,美国和英国的研究人员宣称,他们在室温条件下建造了核聚变反应堆,而没有采用对高温等离子体进行约束的方 法。他们将用钯制成的电极置于盛有重水(氧化氘)的保温瓶中,然后为重水通上电流。这些研究人员指出,钯可以催化聚变,它能将氘原子间的距离拉近到足以发 生聚变的程度。但是,其他国家及地区的许多科学家并未能得到相同的结果。 2005年4月,冷核聚变取得巨大进展。美国加利福尼亚大学洛杉矶分校(UCLA)的科学家利用热电晶体引发了核 聚变。他们将晶体放入盛有氢的小型容器中,并对晶体加热,进而形成一个电场。接下来,他们将一根金属线插入容器来吸收电荷。聚焦的电场对带正电荷的氢原子 核产生极强的排斥力,这使得原子核快速挣离金属线,并发生相互碰撞,其力度足以实现聚合。这一反应是在室温条件下进行的。 |
Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.