原子能的释放、控制和利用,是20世纪重大科技成果之一。原子能是原子核裂变产生链式反应释放出的能量,故又称核能。核裂变和链式反应是在原子反应堆中进行的,所以,原子反应堆是核电站的"锅炉"。 众所周知前三代核电技术之所以分代是出于对安全性的要求越来越高。但是从2000年开始出现了新的情况——国际能源紧张,有核国家积累了多年的高放核废料难以处理。由此出现了两个问题:第一,铀资源是否充足;第二,核废料无法处理,核能可持续发展难以维持。 目前,国外130美元/公斤以下的天然铀储量只有500多万吨,只能供500多座100万千瓦的核电站,但是世界上现在已有372座在运行。而在未来规划中,仅我国就计划到2050年再建设400座百万千瓦的核电站。 鉴于此,第四代核电技术提出几点要求:第一,有效利用核资源、环境干净、可持续发展;第二,经济性好;第三,安全性好,堆型的融化概率达到10-6;第四,实体防卫好。满足上述要求的堆型就可称为第四代堆。在科学家选定的6种第四代堆型中,快堆占据了一半,也是唯一有实际建造的堆型。 目前的核电站中,大多数使用的是轻水堆。轻水堆以铀-235为燃料,以水作慢化剂和冷却剂,水的作用是将裂变产生的快中子慢化和导出堆芯热量。发电能力为100万千瓦的轻水堆,每天使用约3公斤铀-235。虽然用量不多,但是由于天然铀储量有限现探明约可使用1000年,其中铀-235约只占0.7%,而99.3%是铀-238。铀-235和铀-238都是铀的同位素,当慢中子撞击其原子核时,铀-235原子核容易发生裂变,而铀-238却不容易发生裂变,所以不能用作轻水堆的燃料。因此,当今核电站的核燃料中,铀-235如同"优质煤",而铀-238却像"煤矸石",只能作为核废料堆积在那里,成为污染环境的"公害"。 快中子反应堆是指没有中子慢化剂的核裂变反应堆。通常的核裂变反应堆,为了提升核燃料的链式裂变反应的效率,需要将裂变产生的高速中子(快中子)减速成为速度较慢的中子(热中子),通常加入较轻的原子核构成的中子慢化剂,比如轻水,重水等等,利用里面的氢原子作为高速中子碰撞减速的中子慢化剂。 快中子反应堆不用铀-235,而用钚-239作燃料,不过在堆心燃料钚-239的外围再生区里放置铀-238。钚-239产生裂变反应时放出来的快中子,被装在外围再生区的铀-238吸收,铀-238就会很快变成钚-239。这样,钚-239裂变,在产生能量的同时,又不断地将铀-238变成可用燃料钚-239,而且再生速度高于消耗速度,核燃料越烧越多,快速增殖,所以这种反应堆又称"快速增殖堆"。据计算,如快中子反应堆推广应用,将使铀资源的利用率提高50-60倍,大量铀-238堆积浪费、污染环境问题将能得到解决。 在快中子增殖堆内,每个铀239核裂变所产生的快中子,可以使12至16个铀238变成钚239。尽管它一边在消耗核燃料环239,但一边又在产生核燃料钚239,生产的比消耗的还要多,具有核燃料的增殖作用,所以这种反应堆也就被叫做快中子增殖堆,简称快堆。在快中子反应堆中,不能使用水来传递堆芯中的热量,因为它会减缓快中子的速度,钠和钾的合金可用于快中子反应堆作热交换剂。 快堆使用直径约1米的由核燃料组成的堆芯,铀238包围着堆芯的四周,构成增殖层,铀238转变成钚239的过程主要在增殖层中进行。堆芯和增殖层都浸泡在液态的金属钠中。因为快堆中核裂变反应十分剧烈,必须使用导热能力很强的液体把堆芯产生的大量热带走,同时这种热也就是用作发电的能源。钠导热性好而且不容易减慢中子速度,不会妨碍快堆中链式反应的进行,所以是理想的冷却液体。反应堆中使用吸收中子能力很强的控制棒,靠它插入堆芯的程度改变堆内中子数量,以调节反应堆的功率。为了使放射性的堆芯同发电部分隔离开,钠冷却系统也分一次回路和二次回路。一次回路直接同堆芯接触,通过热交换器把热传给二次回路。二次回路的钠用以使锅炉加热,产生483℃左右的蒸气,用以驱动汽轮机发电。 快中子增殖堆几乎可以百分之百地利用铀资源,所以各国都在积极开发,现在全世界已有几十座中小型快堆在运行。 在快堆中,又以钠冷快堆性能最好,全世界建过18个钠冷快堆,中国实验快堆(CEFR)也是钠冷快堆。同铅冷快堆和气冷快堆相比,钠冷快堆优势明显。首先,钠原子质量大,中子碰撞之后质量不损失;第二,钠吸收中子不多,不损耗能量;第三,导热性好,很容易把能量带走,解决了反应堆最怕的过热问题;第四,钠的熔点是98℃,但沸点高达890℃。在通常500℃~600℃的工作环境中不需要加压,安全性高。在CEFR中,8米直径的反应堆用了260吨的液态钠,只需要两层25毫米外壁的壳进行防护。可以说,钠是目前最好的快堆冷却剂。 中国实验快堆是我国快中子增殖反应堆(快堆)发展的第一步。该堆采用先进的池式结构,核热功率65兆瓦,实验发电功率20兆瓦,是目前世界上为数不多的大功率、具备发电功能的实验快堆,其主要系统设置和参数选择与大型快堆电站相同。实验快堆充分利用固有安全性并采用多种非能动安全技术,安全性已达到第四代核能系统要求。据中国实验“快堆”总工程师徐銤介绍,“与前几代核能系统比,‘快堆’的安全性好、废料少,优势十分明显。虽然我国在发展“快堆”方面比一些发达国家晚了一步,但我们在学习国外技术的基础上进行改进,在管理方法、安全性上都有提高。”徐銤说,由于“快堆”采用了先进的非能动事故余热排出系统,日本福岛核电站发生的堆芯熔化事故,在“快堆”身上不会发生。 中国核工业集团公司相关负责人介绍,以快堆为牵引的先进核燃料循环系统具有两大优势:一是能够大幅提高铀资源利用率,可将天然铀资源的利用率从目前在核电站中广泛应用的压水堆的约1%提高到60%以上。二是可以嬗变压水堆产生的长寿命放射性废物,实现放射性废物的最小化。快堆技术的发展和推广,对促进我国核电可持续发展和先进燃料循环体系的建立,对核能的可持续发展具有重要意义。 该项目由科技部、国防科工局主管,中国核工业集团公司组织,中国原子能科学研究院具体实施。多年来,原子能院组织国内相关大学、研究院和企业等数百家单位并大力开展国际合作,经过不断创新探索和协作攻关,先后完成了研究、设计、建造、调试。在长达20多年的实验快堆研发过程中,我国全面掌握了快堆技术,取得了一大批自主创新成果和专利,实现了实验快堆的自主研究、自主设计、自主建造、自主运行和自主管理,形成了完整的研发能力,并培养了一批优秀的技术人才队伍。作为总工程师,徐銤带领着团队,从预先研究、概念设计、初步设计、施工设计及建筑、安装调试,一手缔造了中国第一个“快堆”。长达11年的建设过程中,他们先后完成设计文件5000多册,调试技术文件600多册,运行维保规程600多册、各类研究报告1200多个,开展设计验证近53项,调试试验1000多项。作为一个全新的重大科学工程,徐銤和他的科研团队始终坚持自主创新,并加强国际合作,取得了以钠工艺为代表的一批自主创新成果,申请了百余项专利,设备国产化率高达70%,为我国“快堆”发展打下了坚实的基础。 近日,俄罗斯技术监督总局(RTN)颁布了其多功能钠冷快中子反应研究堆(MBIR)的施工许可证。该反应堆设施将位于季米特洛夫格勒的原子反应堆研究所(RIAR)所在的场址。 去年7月该场址获批许可证,RTN的专家委员会-伏尔加区核与辐射安全监督部门在10月完成了对所提交的信息的审查,这些信息是核研究设施修建许可申请的一部分。 MBIR的准备工作将在今年夏天结束,最终将对核反应堆所在的主要建筑的地基进行混凝土浇注。MBIR将取代目前世界上唯一运行中的快中子研究堆BOR-60。BOR-60自1969年开始运行,到2020年12月退役。 BOR-60中的长期照射测试过程将转移到MBIR。原子反应堆研究所在最新的声明中确认,MBIR将定于2020年调试。 原标题:钠冷快中子反应堆概述
|
Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.