文章

微型聚变装置可能吗?

发布时间:2014-11-3 10:37    来自: Max Planck Institute for Plasma Physics

Building a small, transportable fusion power plant has long been a dream of fusion researchers. In the course of their research, however, it became clear that a functioning power plant has to be of a certain minimum size. Nevertheless, there are occasionally renewed attempts (see “The fusion upstarts”, in Nature, Vol. 511, 14/7/2014, p. 398 ff.). IPP scientists Professor Sibylle Günter and Professor Karl Lackner explain why also the latest version proposed by US technology concern Lockheed Martin might well remain a dream:

 

The patent applications for the device proposed by Lockheed Martin do not involve a really new concept, but combine the known concepts of a magnetic cusp and a magnetic mirror. Both are impaired by the fact that charged particles can escape along the magnetic field lines out of the confinement region. This leads to an intolerable energy loss, because it is primarily the fast, hot particles that get lost first. Nor does it help here, as proposed, to link several cusps behind one another or combine them with magnetic mirrors.


 The magnetic coils inside of the compact fusion experiment are critical to plasma containment.

Photo: Lockheed Martin

What is envisaged is incorporating coils in the vessel, i.e. inside the plasma. This needs connections to the outside and fixtures in the plasma vessel. Hot plasma particles from the core of the device would thus come into direct contact with these fixtures. The fundamental idea of magnetic confinement, however, is precisely to keep the high-energy plasma particles in the core moving along the magnetic field lines at always the same volume without impinging on material walls. Otherwise the plasma cools down very fast. One solution here would be superconducting coils levitating in the vessel without support, this leaving, however, the above energy loss problem: The configuration proposed is not suitable for confining hot plasmas.

 

Furthermore, the coils inside the plasma vessel have to be shielded not only from the surrounding hot plasma, but also from the neutrons produced in the fusion process. With superconducting coils, at least 80 centimetres of shielding around each coil is needed. This does not accord with the power plant size envisaged.

 

All of these problems have been resolved by the tokamak and stellarator concepts pursued today. Nevertheless, it is not possible to build small, transportable power plants. This is because attaining a positive energy balance, i.e. producing more fusion power than needed for heating the plasma, calls for extremely good thermal insulation of the plasma, viz. about 50 times better than styropor. In a power plant a temperature in the plasma core of 100 to 200 million degrees is needed, while at the walls no more than 1,000 degrees is tolerable. Such large temperature differences in the plasma drive turbulent flows that mix hot and cold regions with one another, i.e. impair the thermally insulating effect of the magnetic field. This has to be compensated with a larger volume. Here it is the size of the temperature gradient that determines the turbulent flows and hence the minimum size of a power plant. How a positive energy balance is to be achieved with the compact version propagated by Lockheed Martin is not even remotely mentioned in the patent applications. 


Original Title: Are mini fusion power plants possible? Lockheed Martin’s compact reactor concept / fusion drives for aircraft and trucks?

上一篇:PPPL成功测试能够减缓边界局域模不稳定性的系统下一篇:利用射频波控制聚变等离子体密度

推荐阅读
又一核电机组开工!
又一核电机组开工!
4月26日11时56分,国家电投广东廉江核电项目一期工程2
12个!又一“核电大省”披露重点项目名单
12个!又一“核电大省”披露重点项目名单
“核电大省”广东日前发布广东省2024年重点建设项目计
刚刚!又一台核电机组首次并网成功
刚刚!又一台核电机组首次并网成功
4月9日20时29分,中广核广西防城港核电站4号机组首次
中国广核披露一季度发电量及11台核电机组建设情况!
中国广核披露一季度发电量及11台核电机组建
4月9日,中国广核披露2024年第一季度运营情况。2024年
首届核能峰会举行,核能复兴开始……了吗?
首届核能峰会举行,核能复兴开始……了吗?
3月21日,首届核能峰会在比利时首都布鲁塞尔举行,会
我国在建核电机组 26 台,保持全球第一
我国在建核电机组 26 台,保持全球第一
近年来,中国核电产业迎来了重启后的审批和建设高潮。
精彩图片
  • 又一核电机组开工!
  • 12个!又一“核电大省”披露重点项目名单
  • 刚刚!又一台核电机组首次并网成功
  • 中国广核披露一季度发电量及11台核电机组建设情况!
    关注我们
  • 微信公众号:
  • NuclearNet
  • 扫描二维码加关注

Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.

联系我们|网站声明|中国核网-核能领域第一垂直门户网站