电池的增长对系统整合也有影响,与波动的可再生能源增加有良好的协同效应,特别是在2DS和B2DS情景中。因此,这对不同部门之间整合和相互协调激励的政策设计也是一个挑战,因为储能的规模在不断的扩大。 电动汽车从2010年开始起步,在2015年突破100万辆之后,全球电动汽车保有量在2016年继续突破200万辆。 目前,纯电动汽车份额较插电式混合动力汽车一直有领先优势。 但是与全球汽车保有量相比,本报告中的这些电动汽车只占很小一部分市场份额,仅占全球轻型乘用车保有量的0.2%。 2016年,在电动汽车保有量上中国超过了美国,成为在运电动汽车数量最多的国家。这主要得益于中国快速发展的纯电动车市场,目前纯电动车(较插电式混合动力汽车)在中国占主流。从2014年起,纯电动汽车在中国电动汽车的保有量占比就稳定在75%。中国和美国一起占全球电动汽车保有量的60%。欧洲国家加起来占了剩余的绝大部分,约28%。跟电动车的销售情况一致,全球电动汽车保有量继续集中在少数几个市场。前5大国家占了全部(保有量)的80%,而前10大国家加起来则占了96%。 尽管电动汽车保有量持续增长,但2011年以来增长速度也在不断下降,从2014年的84%,下降到2015年的76%,再到2016年的59%。纯电动汽车当前依然占电动汽车保有量的大部分,约60%。从2012年以来,这个比例就没有发生过大的变化,一直在60%左右波动。 以2016年的200万辆为基础,所有的IEA情景都显示,直到2030年电动汽车保有量都会有巨大的上升空间: 在RTS情景,预计2030年将有5600万辆电动汽车,是2016年保有量的28倍。这个情景反映了目前已经宣布或考虑的能效、能源供应多样化,空气质量和去碳化等政策。 在2DS情景中,电动汽车保有量的“雄心”上升到了1.6亿辆。这个情景的背景情况就是,有50%的可能将全球温升控制在 2°C。 在B2DS情景中,为了在2060年后不久实现能源部门温室气体零排放,电动汽车保有量要在2020年达到2500万辆,2030年则要超过2亿辆。 按照行业过去的趋势,即使在RTS情景中,电力在交通领域也会扮演了非常重要的角色。 但是,市场主导的创新将不足以打破交通行业对石油的依赖。实现B2DS情景中的电气化率需要强力的政策信号,比如出台零排放区和内燃机汽车销售禁令等严格的管制措施。 如果看轻型轿车市场,如果要实现B2DS情景的政策目标,该行业2060年73%的能源消费需要由电力来提供。 如果看重型卡车市场,最初是超低排放技术然后是零排放技术需要快速地在这个行业予以实现。在RTS情景,天然气汽车会在城区的运输车队率先得到推广应用,而电动卡车或氢能卡车等零排放技术的推广初期进展有限,主要发生在模型分析期的后半段及提供了清晰政策信号的地区。 如果不采取措施挖掘建筑能效的巨大潜力的话,建筑行业的快速增长将带来能源需求的大幅增加,特别是在新兴经济体国家。能源需求的快速增长将给电力行业带来更大的压力,特别是随着建筑部门的持续电气化。 在B2DS情景, 通过转向高效、低碳的技术不仅可以带来更低的能源需求,还可以在使用比RTS情景更少的电力的情况下实现更高水平的建筑电气化。 这些高效技术-比如建筑里的热泵加储能技术–还可以提高能源系统的灵活性。 工业原料对经济社会发展和向低碳系统转型都至关重要。在所有情景中,很多重要材料的产量未来还会继续增长。在B2DS情景中则要求有很多重要材料以最高效的方式生产和使用,以尽可能减少对能源需求和碳排放的影响。 有几项关键策略可以使工业部门的能源消费和CO2排放减少:材料效率、能效和使用最先进的技术、燃料和原料替代,以及包括CCS在内的创新性技术。在2030年之前,通过能效和低碳燃料替代获得的能源节约和直接CO2减排潜力最大,而从长期的碳减排来看创新性的低碳技术至关重要。在近期,材料效率对碳减排有一定影响,并且这种影响将随着时间的推移会有缓慢的增加,因为回收率和生产效率都有提高,而且他们对减少材料生产的影响随着材料需求不断增加而增大。 在B2DS情景中,工业部门在2030年之前采取的早期的碳减排措施带来的减排量占了2014年-2060年直接碳减排量的15%,并且从长期来看这防止了低效技术在新增产能中应用的“锁定”效应,以及避免了在创新性低碳技术上的额外投资。 从生物质获取的能源(也就是生物质能源)是人类已知最古老的能源,目前依然是全球最大的可再生能源来源,占全球一次能源供应的11%左右。生物质能源在新兴经济体和发展中国家以低效的方式为贫困家庭提供能源,用于做饭和供热。 在RTS情景中,虽然用传统方式使用的生物质有所降低,但生物质能源在终端的使用量依然增长了45%。这个增长主要受已有的优惠政策的刺激。 现代生物质能源是低碳能源情景的重要部分,因为作为一种可以广泛获取的可再生能源,生物质能源在供热,电力和交通设施减碳中扮演重要角色,正如接下来我们要讨论的,这些领域很难用其他方式实现去碳化。扮演这样一个重要角色非常具有挑战性,为了优化生物质能源的贡献,需要客服一系列技术,经济和市场障碍。 然而,生物质能源只有在可以带来明确和巨大的碳减排,并且不引起对环境无法控制的影响或者社会和经济问题的情况下,才能在能源行业碳减排中发挥重要作用。 在2DS和B2DS情景中模拟生物质能源的角色时,考虑到能持续获取的生物质原料数量的限制,总的可获取的生物质供应被限定在145 EJ。 在B2DS情景中,生物质能源继续扮演重要角色,但重心有所转移。这是由于更高的能效水平和其他技术的更大贡献所带来的能源使用和燃料结构的变化。一个关键的变化就是更多的生物质能源生产使用BECCS(生物质能源碳捕集和封存)和BECCU(生物质能源碳捕集和利用)技术。B2DS情景中需要的可持续生物质的总体水平与2DS情景差不多。 实现生物质能源在2DS和B2DS情景中的贡献取决于一些新技术的开发和应用,特别是交通燃料。 145 EJ的原料需求在可持续获取的范围内,但是如何获得这些资源是一个挑战,且需要创新-比如发展尽可能减少对土地使用影响的生物质来源。 这要求一个国际认可的可持续性管理机制的支持,可以避免使用不好的方式,同时刺激和支持在可持续供应上的创新。 讨论CCS这种重要的技术前,我想提醒在座的各位,国际能源署的政策推荐是和前置性的政策目标假设紧密关联的:这个政策假设是,本世纪末全球平均温升按照《巴黎协议》需要控制在2°或者1.5°的水平。 在2DS情景中,CCS在减少电力、工业和交通领域的碳排放中作用巨大。在2060年,每年将有大约70亿吨的CO2被捕集。这与目前每年3000万吨的捕集量相比,是一个巨大的增长。B2DS情景则更加依赖CCS,2060年需要每年捕集超过110亿吨CO2。 在展望期(2060年)内,中国和美国占了每年捕集量的几乎一半;而在展望期后,则占约三分之一。 我们坚信,CCUS不是实验性的,不是科幻小说。这与媒体经常说的CCUS“未经证实”的论调相反。 因为经过已有的超过12年的试验运行,全球工程数量正在增长。 |
Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.