文章

微型聚变装置可能吗?

发布时间:2014-11-3 10:37    来自: Max Planck Institute for Plasma Physics

Building a small, transportable fusion power plant has long been a dream of fusion researchers. In the course of their research, however, it became clear that a functioning power plant has to be of a certain minimum size. Nevertheless, there are occasionally renewed attempts (see “The fusion upstarts”, in Nature, Vol. 511, 14/7/2014, p. 398 ff.). IPP scientists Professor Sibylle Günter and Professor Karl Lackner explain why also the latest version proposed by US technology concern Lockheed Martin might well remain a dream:

 

The patent applications for the device proposed by Lockheed Martin do not involve a really new concept, but combine the known concepts of a magnetic cusp and a magnetic mirror. Both are impaired by the fact that charged particles can escape along the magnetic field lines out of the confinement region. This leads to an intolerable energy loss, because it is primarily the fast, hot particles that get lost first. Nor does it help here, as proposed, to link several cusps behind one another or combine them with magnetic mirrors.


 The magnetic coils inside of the compact fusion experiment are critical to plasma containment.

Photo: Lockheed Martin

What is envisaged is incorporating coils in the vessel, i.e. inside the plasma. This needs connections to the outside and fixtures in the plasma vessel. Hot plasma particles from the core of the device would thus come into direct contact with these fixtures. The fundamental idea of magnetic confinement, however, is precisely to keep the high-energy plasma particles in the core moving along the magnetic field lines at always the same volume without impinging on material walls. Otherwise the plasma cools down very fast. One solution here would be superconducting coils levitating in the vessel without support, this leaving, however, the above energy loss problem: The configuration proposed is not suitable for confining hot plasmas.

 

Furthermore, the coils inside the plasma vessel have to be shielded not only from the surrounding hot plasma, but also from the neutrons produced in the fusion process. With superconducting coils, at least 80 centimetres of shielding around each coil is needed. This does not accord with the power plant size envisaged.

 

All of these problems have been resolved by the tokamak and stellarator concepts pursued today. Nevertheless, it is not possible to build small, transportable power plants. This is because attaining a positive energy balance, i.e. producing more fusion power than needed for heating the plasma, calls for extremely good thermal insulation of the plasma, viz. about 50 times better than styropor. In a power plant a temperature in the plasma core of 100 to 200 million degrees is needed, while at the walls no more than 1,000 degrees is tolerable. Such large temperature differences in the plasma drive turbulent flows that mix hot and cold regions with one another, i.e. impair the thermally insulating effect of the magnetic field. This has to be compensated with a larger volume. Here it is the size of the temperature gradient that determines the turbulent flows and hence the minimum size of a power plant. How a positive energy balance is to be achieved with the compact version propagated by Lockheed Martin is not even remotely mentioned in the patent applications. 


Original Title: Are mini fusion power plants possible? Lockheed Martin’s compact reactor concept / fusion drives for aircraft and trucks?

上一篇:PPPL成功测试能够减缓边界局域模不稳定性的系统下一篇:利用射频波控制聚变等离子体密度

推荐阅读
中核二三领导班子调整
中核二三领导班子调整
8月22日,中核二三召开干部任职宣布大会,公司党委书
辛安核电项目有进展
辛安核电项目有进展
8月15日,烟台市人民政府网站发布《山东海阳辛安核电
定了!中国华能迎新任总经理!
定了!中国华能迎新任总经理!
2024年8月19日,中国华能集团有限公司召开领导班子(
国常会核准5个核电项目,合计11台机组,拉动千亿级投资!
国常会核准5个核电项目,合计11台机组,拉
国务院总理李强8月19日主持召开国务院常务会议,决定
中核集团人事密集调整!涉及江苏核电等!
中核集团人事密集调整!涉及江苏核电等!
宋克祥任中核医疗产业管理有限公司总经理、党委副书记
中广核新能源江西分公司原总经理邓东被查!
中广核新能源江西分公司原总经理邓东被查!
8月12日,“廉洁南昌”发布消息称,中国广核新能源控
精彩图片
  • 中核二三领导班子调整
  • 辛安核电项目有进展
  • 定了!中国华能迎新任总经理!
  • 国常会核准5个核电项目,合计11台机组,拉动千亿级投资!
    关注我们
  • 微信公众号:
  • NuclearNet
  • 扫描二维码加关注

Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.

联系我们|网站声明|中国核网-核能领域第一垂直门户网站