海水-铀总量达45亿吨,是巨大的潜在核燃料来源。海水提铀实验研究,目标是开发一种经济上有生命力的“海水提铀”方法,“以备”常规铀资源变得过度稀缺、昂贵或环境影响不利于维持核工业竞争力时“之需”。 2014年,美国从海水萃取铀的研究取得新进展: • 能源部资助的大学海水提铀研究取得“新成果”。 • 基于日本海水提铀研究的最新成果,建立了美国海水提铀实验研究的“新基点”。 • 今年8月,能源部继续资助大学开展新的研究,开始“新征程”。 一.美国大学海水提铀实验研究的“新成果” 能源部核能办公室(DOE/NE)在“核能大学规划”(NEUP)2011财政年度“研发”专项“支持使命变革研究”名义下,奖励5个大学开展海水提铀实验研究。项目研究2013年12月终结,今年陆续发布研究成果[1]。 NEUP-11-3059:“增强海水提铀”。马里兰大学的这个项目证实,Winged™尼龙是同类材料中较好的吸附剂。这种材料经辐照,使高表面积与良好的机械性能相结合,铀载荷高达4.4%,分布系数约为104 mL/g。首次循环后经饱和草酸铵水溶液再生,耐久性好,至少21个循环后吸附能力退化仍可忽略不计。在海水中,磷酸损失极小。 EUP-11-3115:“海水提铀吸附剂载体聚合物制备和开发”。纽约市立大学亨特学院的这个项目研究发现,伯铵-CH2NH2配合基绑定交联的聚苯乙烯对人造海水基质的铀铣离子有很高的亲和力,铀铣吸附能力高达14.8mg U/g-聚合物,(按照每克分子配合基计算,使结果与聚合物载体无关)。伯胺优于氨肟的另一特点是制备更简单。 NEUP-11-3123:“新颖的海水提铀吸附剂—从虾壳直接提取官能化高分子量壳质纳米纤维”。阿拉巴马州立大学的这个项目,用海鲜废物制造海水提铀的甲壳素基吸附剂,高效、性价比高、更强、更耐用,材料是可再生资源。 NEUP-11-3256:“海水提铀创新洗提工艺”。爱达荷大学开发了硝酸钠-过氧化氢洗提工艺,能有效去除胺肟基吸附剂上的铀,无需任何复杂的吸附剂再生步骤。 NEUP-11-3151:“开发新颖的海水提铀吸附剂”。芝加哥大学的这个项目主持人是美籍华人化学家林文斌。他有意凭藉纳米科学和纳米技术中最新的突破性优势,把高密度、精心设计的配体加进纳米多孔载体,以便有选择性和高效地“绑定”海水中的铀铣离子。预计提议的纳米结构的吸附剂材料除用于增强海水提铀,还有可能把开发的技术转化为环境治理和其他超低浓金属富集和隔离应用。 林文斌开发了含多孔二氧化硅纳米粒子((MSN)的胺肟,确认最有希望的纳米结构的吸附剂是金属-有机骨架(MOF)的纳米多孔载体。湿吸附模式指出最好材料的饱和能力高达185mg/g。人造海水中铀的吸附作用减小到1/4,获得的最大铀吸附量是12.1mg/g。拟合吸附等温线确认,二已氧磷酸酯(diethoxyphosphonate)和环状亚胺二肟(cyclic imide dioxime)是最好的吸附剂:饱和能力更高,亲合力更大。 研究证实,带有磷酸基脲官能团的多孔MCF材料是酸性条件下铀吸附的良好候选材料,而且是从核废物和酸性矿排水采铀的有希望的有机聚合物吸附剂替代品。观察到二甲基磷酸酯脲官能团面向促进与同样的铀原子协同相互作用,非常有竞争力。 磷酸酯官能化的多孔碳材料已送交大西洋西北国家实验室(PNNL)进行海洋毒理学试验,也送交橡树岭国家实验室,以确认初始的海水试验结果。但据说,PNNL现场鉴定纳米结构的吸附剂,还有待补充某些实验条件。 二、美国海水提铀实验研究“新基点” 3月11日,美国化学学会《工业工程化学评论》杂志宣布将在2014第53(14)期上发表金荣格(Jungseung Kim)等人的文章“用胺肟基聚合吸附剂从海水回收铀:现场实验、建模和经济评估更新”[2]。其实,这是个实验报告。利用ORNL新开发的高表面积聚乙烯纤维胺肟基聚合吸附剂从海水提取铀,特征是批处理和流入式“实验室研究”。但它以日本海水提铀研究的最新成果作参照,以ORNL新开发的胺肟基聚合吸附剂为基础,建立了美国海水提铀实验研究的“新基点”。它把海水提铀系统的实验研究推向科学、规范、简单比对即可推向商用的水平。 日本的海水提铀材料和现场实验的最好成果是:胺肟基聚合材料发辫经γ辐照嫁接,在近海实验现场与海水接触30天,吸附能力为1.5mg U/g-吸附剂。日本研究团队提议的大型海水-铀生产系统设计参量见表1,2006年估算的铀生产成本是9000日元/kg-吸附剂。美国项目组对此系统进行了独立成本分析,折算到2011年美元,结果是1230美元/kg-U,可信度95%。 实验研究任务: 项目组的研究目标是与日本的最佳吸附剂对比,获得海水提铀的动力学和平衡态信息,并用这些信息于经济可行性研究,评价工艺的实用性并确定未来的工作目标。 • 太平洋西北国家实验室(PNNL)海洋科学实验室,天然海水现场吸附柱实验,借助动力学摄取模型更好的了解吸附速率控制机制。新的实验和动力学模拟结果有助于更新经济评价(成本分析)。 PNNL海洋实验室现场试验示意图和实验条件见图1和表2 a PNNL独立验证。 ORNL新开发的吸附剂材料: • 胺肟嫁接聚合吸附剂(Amidoxime-grafted polymeric adsorbents)以多孔聚乙烯纤维作为载体材料,提供高表面积(1.35m2/g),能增加官能团嫁接的自由度,促进通过纤维的各种金属离子的转移。这种纤维嫁接前的平均长度和密度分别为25 mm和0.941 g/cm3,湿纤维的直径约153 ± 15μm。 • 辐照诱导嫁接聚合(RIGP)法:(i)通过辐照在聚乙烯纤维上生成自由基, (ii)单体嫁接,(iii)配体转换,(iv) 碱性处理调制。 • 日本/美国吸附剂的差别:两者的嫁接官能团使用的聚乙烯基质形式不同,美国是高表面积纤维;日本是片状聚乙烯无纺布。 实验结果: 实验摄取的铀量:铀吸附动力学实验汇编见表3和图2,吸附的数量、铀摄取速率与时间的关系见图3。 • 从图2看,ORNL吸附剂的吸附能力比日本吸附剂(日本原子能机构提供试样)高2倍。 • 根据表3,ORNL吸附剂的铀摄取量2.7mg/g-吸附剂,假设2.85ppb海水浓度下,较低盐度下已经达平衡。使用标准条件(Kd值1010 L/g,盐度35,海水铀浓度3.3ppb),预计ORNL吸附剂与海水接触8周,铀摄取量为3.3 mg-U/g-吸附剂。对日本吸附剂正则化到标准条件,其吸附剂上升到1.3 mg -U/g-吸附剂。这暗示ORNL吸附剂对铀的亲合力约比日本吸附剂大1.6倍。 • 初始吸附速率:ORNL吸附剂的初始摄取速率0.19mg-U/g-吸附剂/天;日本为0.073 mg-U/g-吸附剂/天;10天,ORNL下降到50%,日本8天已下降到50%以下。 • 60天试验期内,ORNL吸附剂摄取速率较高。日本吸附剂在4周内摄取的铀量达到稳定水平,ORNL尚未稳定。 成本分析: 海水铀制品成本演进和潜在的里程碑见图4。基于日本吸附剂,但更新到描述ORNL的吸附剂及其生产工艺。 • ORNL吸附剂数据的动力学模型确定60天铀摄取期,接近成本最小化浸泡期。 • 再下边三个假想的吸附剂性能情景得到的铀生产成本,与2007-2008年铀价猛涨期间观察到的峰值铀现货市场价格相当。这说明吸附剂材料性能研究、改进的巨大潜质。吸附剂能力加倍和耐久性适度改善,就可能导致有竞争力的铀生产成本。 项目组目前还在评估下述情况下ORNL胺肟基聚合吸附剂以及其他不同官能团支持吸附剂的性能: (1)不同地理区域、不同生物地球化学参数; (2)不同温度和线速度; (3)确定金属离子如钒的影响; (4)确定未过滤海水内生物活动的影响。 三. 美国海水提铀实验研究开始“新征程” 美国人从ORNL研发的新型吸附剂实验成果看到“曙光”。NEUP 2013财政年度“研发”专项“燃料循环R&D”名义下批准的“海水-铀”项目多达7个(见表4)。NEUP 2014财政年度又开辟4个涉及“海水-铀”的实验项目(见表5),好像在搞“大跃进”运动[3,4],试图实现更远大的追求。就今后三年要完成的11项实验研究看,重点更多集中于更先进、有选择性多孔有机聚合物(POP)吸附剂和更具实战性的海洋现场试验研究,以选定实用性的、更新的吸附剂。 结束语 美国有丰富的陆地铀资源。但出于环境保护的考虑,限制开发某些有争议的开采项目。国会拨款并指示政府奖励国家实验室、大学开展海水-铀提取实验研究。DOE最初提出3年研究,成本降低1/2的目标“轻易”地提前实现了。现在看来,再降低1/2很有希望;取得更好结果“不是梦”。 原说我们是“贫铀”国家,近闻“铀资源潜力名列世界前茅”。关键问题是核燃料循环的“前端”经济,包括投资风险和“环境成本”,不能只算“政治账”。要算经济账,资源开发最低限要确保“能源成本”,不能“入不敷出”。目前全世界核燃料循环“一次通过”是主流,开展海水-铀实验研究是保障这种循环核燃料供应的“托底”手段。我国高校正在开展海水提铀实验研究,进步很大。但要展开、扩大,多思路“看”个究竟,不能半途而废。最好是参加国际合作,跟踪国际进展,既可取得共同语言,也可少走弯路。 学物理的人阅读化学和有机化学方面的资料,与看“天书”相差无几。因此请读者小心,凡有“异议”,最可靠的办法是查阅原文,以防误导。 依据资料: 1.详见US DOE/NE NEUP网FY 2011 R&D Final Project Reports-Mission Supporting Transformative Research 2. Jungseung Kim, Costas Tsouris, Yatsandra Oyola, Christopher J. Janke, Richard T. Mayes, Sheng Dai, Gary Gill, Li-Jung Kuo, Jordana Wood, Key-Young Choe, Erich Schneider, and Harry Lindner,Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment,dx.doi.org/10.1021/ie4039828 Ind. Eng. Chem. Res. 2014, 53, 6076−6083 3.详见US DOE/NE NEUP网FY 2013 R&D Award Abstracts-Fuel Cycle Research and Development 4.详见US DOE/NE NEUP网FY 2014 R&D Award Abstracts-Fuel Cycle Research and Development |
Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.