1
在HTR-PM失去冷却的安全性计算中,没有计算结构复杂,承受热冲击能力较差的反应堆上部受热情况,算法也不尽合理。尽管如此,在不失压失冷计算中(氦气不流失),仍然可以看出堆芯上部温度高于1000℃,意味着紧挨堆芯上部的上部结构温度也会在1000℃左右,足以造成破坏。 堆芯进水事故的安全分析没有看到细致计算,只有Lohnert一人的简单稳态估算。该估算假定事故变化过程足够慢,反应堆任何时候都是热平衡的。任何正反应性事件引入,总有足够的时间慢慢达到新的平衡。这是一个不容易成立的假定。实际上,根据Lohnert本人的数据,如果根据实际事故过程,计算进水后反应堆的反应性变化,可以发现,并不需要非常大的进水量(每秒几十公斤),就可以造成堆芯反应性大增而引发严重事故。原因是除了水本身带来的反应性增加,水与石墨反应还能吸收大量热量,导致温度下降而进一步增大反应性。在稳态计算中,忽略了温度下降的影响。 上述事故中,即使因为进水量较小,不足以引起超临界爆炸,也会因为反应性的突然增加导致燃料过热(燃料温度升高也可以抵消反应性增加的影响,但是燃料本来温度就比较高,负反应性的温度因子也比较小,需要大幅升高温度,才能抵消水和低温石墨正反应性的影响),从而破坏燃料球的完整性。大量燃料球的破损,引起堆芯燃料密实率上升,带来更大的正反应性,并堵塞冷却氦气通道,造成堆芯温度过高,从而破坏更多的燃料球……所以,如果发生大量进水,事故最好的结果是废堆,最坏的结果是超临界爆炸。 综上所述,从球床堆的发展历史、现状、和研究范围来看,“世界公认安全性好”的说法很难成立。HTR-MODUL和我国的HTR-10 (HTR-PM,即模组式高温气冷示范堆)虽然做了一些改进,但这些改进,到目前为止,还仅仅停留在纸面上,没有经过实践检验。 对于核反应堆这样一个庞大和复杂的系统工程,很多特性不会很好地顺从设计者的意愿。希望采取一种措施克服以前的某一缺陷,但经常又会带来新的问题。任何一个优点都有它的负面。比如: 能量密度低导致富余热容大,融堆难以发生,但整个堆必然体积庞大,提高复杂性和成本,而且出力小。示范堆的反应堆体积,比功率是它十倍的压水堆还要大。 低功率密度和大热容还意味着,作为慢化剂的石墨温度变化很慢。如果出现瞬间的反应性上升,石墨的温度负反应性要很长的时间才能起作用,或者反应堆功率要增加很多倍,才会让石墨的温度快速地升高(以产生负反应性),而这是非常危险的。 氦气密度小,按质量算热容大,但是需要在比较高的压强下工作,因此压力容器需要很厚,跟功率是它十倍的沸水堆差不多。 氦中子截面小,设计的时候几乎不用考虑氦对中子的影响,但是也少了一个负反应性来源(水堆多一个空泡负反应性)。 氦的分子量低,热速度大,气体中的传热好,但是和固体表面的换热不好,因为通过分子碰撞的换热效率低。这就导致了氦气与燃料及蒸汽发生器之间都需要很大的换热面积。 氦是单原子分子,化学惰性好。但它的热力学自由度少,导致摩尔热容量低,需要很大的温升才能传递较多的热量。 高温堆可以产生很高的工质温度,但是高温会对反应堆材料提出严重挑战。反应堆本来就工作在高温高压高辐照环境,对材料的要求非常高,再大幅度提高工质温度,无疑会产生很多问题,因为任何情况下,都需要隔断高温工质与金属部件的接触。 石墨虽然可以在高温下机械性能提高,但是本身却不是好的结构材料。随着温度升高,机械性能的提高也很有限。即使在强度最高点,也不如普通水泥(没有钢筋)。高温气冷堆里面有很多石墨结构件,如热气导管,堆芯壁,底部结构等,都要承受较大的结构负荷,石墨并不胜任。 一个能量比较高的裂变中子,绝大部分情况下要慢化后才能引起新的裂变。作为慢化剂的石墨,它的最大优点是中子吸收截面比水小很多。但是,石墨的慢化效率比水低。高能中子平均要与石墨碰撞114次,才能变成可以引起裂变的热中子,而与水里面的氢只要碰撞18次,而且,虽然石墨(碳)原子核比氢原子核大很多,可是中子与碳核碰撞的截面(也就是可能性)反而只有氢核的四分之一。也就是,一个氢核的慢化能力是碳核的25倍。氢核的一个缺点是,对中子的吸收要远大于碳核,但是仍然只有铀235裂变截面的几百分之一。 石墨慢化效率低带来三个后果: 第一,中子跑得远,平均需要跑出很长的距离才能充分慢化。在堆芯,这个距离大约是1米(水堆中,即使考虑空泡效应,这个数字也只有两三厘米)。由于堆芯直径只有3米,必然有很多中子跑出堆芯浪费掉。这个数字是20%以上。中子浪费量大意味着需要更多的铀235产生中子,也就是核燃料中铀235的浓缩度必须比较高。高浓缩度的核燃料和大的中子漏失率意味着,作为主要核燃料的铀235利用率低,也就是燃料效率低。同样多的天然铀资源,三代压水堆能发两度电,高温气冷堆只能发一度电。 第二,中子漏失量大,但是还不能让中子跑到反应堆外面(否则整个厂房甚至周边地区都会带很强的放射性),也就是在反应堆压力容器内壁必须安装中子吸收层。中子被吸收之后,吸收它的原子核处于激发态,必然辐射出高能射线以降到稳定的基态。因此中子漏失量大意味着厂房的放射性也大。放射性大将恶化厂房工作环境,破坏反应堆部件,降低各种部件包括压力容器的寿命。 第三,水是可能进入第一回路,也就是堆芯的,而水的慢化效率比石墨高很多,这样进水就会带来较大的正反应性。简单的理解方式是,水降低了中子往外跑的能力,很多中子没有漏失而是引起更多的铀235裂变。水也能更快地让快中子慢下来,每代中子的时间间隔也短了。这都是正反馈效应,中子会更多,导致更多裂变,……。一般来说,如果这个过程足够慢,慢化剂的温度会升高,铀燃料的温度也会升高,这两个效应将降低反应性,以抵消水的影响,但是如果同时还有别的原因引起温度下降,即像上面计算的那样,正反应性克服不了,就会发生超临界爆炸,或大量燃料球破损的废堆事故。 高温气冷堆还有很大的一个特点是“球床”,也就是燃料由很多直径为6厘米的燃料球构成。燃料球结构类似火龙果,里面有1万多个直径一毫米的三层保护燃料核(TRISO),燃料核和石墨一起压实,再在外面包一层0.5厘米厚的石墨。燃料核最里面是直径0.5毫米的二氧化铀燃料,外面一层0.1毫米厚的多孔碳,用来吸收铀的裂变产物,并隔开外面的保护层,接着三层0.04毫米左右的裂解碳,碳化硅,裂解碳。裂解碳有很好的导热性,用来导热,碳化硅强度高,用来提供强度。根据设计,燃料球应该在堆芯可能出现的最高温度以下,提供很好的强度,导热性,和对放射性核废料“囚禁”。 普通石墨的导热性跟铁差不多,不是很好,但是热解碳在它的裂解面上导热性特别好。这是TRISO燃料如此设计的原因。但是有一个问题,就是热解碳并不是一个稳定的结构,在高通量辐照和高温的影响下,会失去某一方向导热良好的特点。也就是,运行一段时间后,燃料球的导热性会下降。另外,紧靠燃料的多孔碳导热性本来就不好。所以,燃料到石墨的导热并不会非常好。 燃料到石墨导热性不好的后果是,如果堆芯意外反应性上升,反应堆功率上升,再加上石墨热容大,石墨来不及升温产生足够的负反应性,导致燃料温度特别高。因为大部分额外产生的热量都分配到重量轻、热容小的燃料上了。这将引起碳化硅爆裂,破坏燃料球的完整,后果上面已经说过了。 燃料球本身还有不少问题: 第一,石墨的机械强度并不高,燃料球里面还有很多“沙粒”,因此整体强度还要下降。示范堆堆芯高度达11米,下面还有很高的排料管,超过以前所有球床堆的堆芯高度。AVR和THTR-300都发生过燃料球破裂事故(THTR-300尤其严重)。燃料球的生产工艺并没有很大的改进,因此示范堆燃料球的完整难以保证。对于球床堆,燃料球的完整性非常重要。因为一旦有球破损,不但将放射性释放到一回路,大量“沙粒”还会加速其它燃料球的磨损,引起更多破损。破损的燃料球还会让一回路充满粉尘。粉尘的沉积和“沙粒”将引起燃料球和氦气流动困难,并造成石墨密实度上升,带来正的反应性。氦气流动困难导致反应堆不得不降功率运行。 第二,燃料球中铀235的浓缩度高达9%,是所有热堆中最高的。一般水堆,最高也不会到5%。高浓度的铀很容易被用来做成“脏弹”——当量很低的原子弹。 第三,由于核材料的敏感性,世界范围内,核燃料的管理非常严格。全世界任何一根压水堆或者沸水堆使用的燃料棒,都在国际原子能机构登记在册。生产,运输,燃烧,暂存,后处理,每一个阶段都有登记,管理严格。而高温气冷堆的燃料球,数量太大(一个电厂随时使用上百万颗),材料还是石墨,连个序列号都打不上(会被磨掉),自然无法登记追踪。如果生产或者发电过程中失窃,很难察觉。 第四,燃料球不会在每个发电厂生产,必然在专门的燃料厂生产,然后运输到核电站。水堆燃料组件中,核燃料占总重量的一半以上,而球床堆的燃料球,燃料只占球的百分之三。这意味着运输量要大几十倍。而且,由于燃料球比较脆弱,运输的时候需要一颗一颗保护,更是加大了运输成本。 第五,燃料球很难后处理,作为核废料的乏燃料体量巨大,比同样燃耗的水堆乏燃料多出几十倍。乏燃料或者核废料的处理非常困难,现在全球都没有好的解决办法。高温气冷堆核废料巨大的体量,显然又把这个问题放大了几十倍。 堆芯中,燃耗相同的情况下,燃料球的功率与中子通量和温度有关。中子通量差别不很大,因为堆芯周围有中子反射层(其实更合适的叫法是中子阻碍层),而中子的自由程也比较大。因此燃料球功率主要取决于其周围的温度。温度越低,裂变功率越高。一般来说,中心温度会高一些,周围因为靠近较冷且不发热的石墨壁,温度会低一些。这样,周边的燃料球裂变热功率反而高。 燃料球是循环流动的。由于出口在正下方,芯部的燃料球走得更快(作为对比,观察沙漏,中心部位会先出现一个坑),也就是燃耗低的燃料球更容易排出,周边燃耗高的更不容易。时间长了,周边的燃料球燃耗高,功率下降,温度更低。这会引起两个问题:第一、部分燃料球燃耗太高,影响堆芯的整体反应性,使堆芯功率下降。第二、引起严重的热流体不稳定性。即周边温度低,中心温度高,温度高的部分因为有向上走的趋势(浮力),风速更低,周边冷的部分风速更大,也就是冷的更冷,热的更热。250度和750度的氦气密度相差近一倍,所以这一效应是很强的。热的部分得不到冷却,而且由于周边燃耗高,功率低,为了保证出力,中心功率必然更高,冷却气体的温度也更高,浮力更大,冷却更差,如此恶性循环。这一热流体不稳定性,很可能是AVR出现超高温,和TFTR燃料球大量破损的重要原因。 高温气冷堆的燃料球流动无法控制,这是业界都知道的一个问题。上面说的热流体不稳定性一定存在,但是没有看见相关研究。热流体不稳定性带来的后果是,一旦堆芯出现温度不均匀,不稳定性将放大温度差别,致使部分区域达到很高的温度,超过燃料球可以承受的温度极限,引起燃料球破损和放射性释放。 核反应堆是一个复杂的系统工程。我国科学家经过长期努力,掌握了模组式球床高温气冷堆的全套技术,的确是一个很大的成就。但是科学有自己的规律,不可能一蹴而就。石墨堆有一些“固有不安全性”,比如进水危险,燃烧危险,超临界危险等。球床堆的发展历史也可以看出,还有很多技术问题没有解决。几乎所有的设计缺陷,都是事后才发现的。不能希望模组式的一次改进,能够解决球床堆型的所有问题,特别是还没有商业规模堆运行的情况下。 核能发展,对国家的影响远不止百年。希望高温气冷堆的研究者,核能发展部门,以及决策部门,能够以科学的态度,为了核能的长远发展,和国家的长治久安,更客观地看待高温气冷堆的安全性。 |
Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.