7.关于内陆核电厂散热系统运行的热影响 《十问》中的第7个问题是:“湘鄂赣核电站装机容量之高没有国际先例可循,巨量废热排放将对局地气候产生什么影响?” 何祚庥院士和王亦楠研究员在《湘鄂赣三省发展核电的安全风险不容低估》(2015年3月9日)一文中认为:“核电的热污染比火电严重得多,发达国家已注意到内陆核电对气候变化呈干旱趋势的区域造成很大负面影响。”王亦楠研究员在《十问》中进一步提出,“每个内陆核电站每天向空中排放2000亿大卡废热,这一史无前例且几乎贯穿全年的巨量热污染对长江流域旱情的加重不容忽视。”对于这个问题,我们的看法如下。 核电厂的散热系统由循环冷却方式确定,我国内陆核电厂均考虑采用二次循环冷却系统。在采用二次循环冷却系统的情况下,电厂的散热系统(冷却塔)将绝大部分乏热散入大气,只有极少部分乏热通过冷却塔排污水带入受纳水体,这与火电厂大同小异。 我国还没有内陆核电厂,但我们可以借用美国的相关评价资料。NRC分别在1996年和2009年对美国运行核电厂的环境问题进行总体评估。在这两次环境问题识别中,均未提出冷却塔散热系统运行会加重流域旱情的问题,但均包括冷却塔运行产生的盐雾漂滴、结冰、起雾或湿度变化等所致的影响。NRC的评估意见指出,核电厂冷却塔散热系统对于局地气候的影响是小尺度的(几km以内),并且指出对于局地气候的影响均在各局地气候参数的年际变化范围内。 此外,按国家能源局统计,2014年我国火电装机容量超过9亿千瓦(电)。我们没有确切数据指出其中有多少分布在长江流域(应该是一个不小的份额),但至今也未见有人提出这些火电厂运行会加重流域干旱的问题。 8.严重事故工况下确保水资源安全的应急预案 《十问》中的第8个问题是:“何以做到‘最严重事故工况下核污水可封堵、可贮存、可控制,最多只有4800~7000立方米且都被控制在安全壳内’?”在这个问题中,王亦楠研究员询问:“为何没有‘事故情况下放射性气体通过降雨流入江河湖泊’的应急预案?福岛核电站至今也控制不住核污水以每天400吨的速度增长,场区50多万吨核污水早已堆满为患,不得不排向大海;……我国内陆核电安全论证严重低估了核事故的复杂性:既没有可信可靠的技术措施证明核污水如何‘封堵控’,也没考虑‘放射性气体逸出厂区、通过雨水进入地下和江河湖泊’的应急预案。” 对于这个问题,我们有以下的分析。 (1)日本福岛核事故产生大量放射性污水的原因 首先,福岛核事故过程中,由于超设计基准地震和海啸导致长时间全厂停电,进而造成堆芯损毁和安全壳厂房失效,1-3号机组未能实现堆芯闭式循环冷却,直至2011年6月,放射性污水处理设施投入运行,经过处理的废水用于1-3号机组的堆芯冷却,才逐渐实现了闭式循环冷却。根据东京电力公司报道的资料推算,在放射性污水处理设施投入前的高放射性污水量大约在14万m3左右。福岛核事故中产生了较多数量的放射性污水,这凸显了严重事故工况下在安全壳内实现堆芯闭式循环冷却的重要性。 其次,日本福岛第一核电厂的反应堆厂房和汽机厂房处在地下水排泄路径上,这些厂房虽然坐落在低渗透性的隔水层上,但厂房四周是含水层。事故前电厂设置有地下水疏水系统。然而,地震使反应堆厂房、汽机厂房以及周围的地下水疏水系统遭到损坏,来自靠山侧的地下水可以通过含水层流入损坏的厂房(每天约400 m3)。地下水进入厂房,就与厂房内已有的污染水混合。为避免厂房内的放射性污水流出,东京电力公司保持厂房内的水位略低于厂房外的地下水位,因此,每天从反应堆和汽机厂房内抽出约800 m3的高放射性污染水。这些水除盐后,进行过滤除铯。其中,大约400 m3的水复用于堆芯冷却,其余部分贮存在专用的贮罐内。这就是福岛核事故现场贮存的放射性污水量不断增加的原因。目前,东京电力公司与日本政府共同采取的多重措施(用硅酸钠降低厂房周围土壤渗透性,建立地下水旁路系统,厂房四周建冷冻防渗墙等)已经实施生效,大量地下水进入损坏厂房的局面已得到控制。 (2)我国内陆核电厂址的安全性 日本福岛核事故由超设计基准地震和海啸事件引发,我们认为,这样的灾难性事件在我国内陆核电厂是极不可能发生的。 在地震安全方面,2011年3月11日发生的日本东北大地震的震级达到9.0级,是世界上有记录历史以来的第5大地震。这次地震发生在太平洋板块和欧亚大陆板块碰撞的板块俯冲带。我国属于欧亚大陆板块,大地构造上属于板块内部地区。主要的破坏性地震活动为大陆板块内部及地壳内部的浅源地震,这类地震与板块俯冲带产生的地震相比,释放的能量要小很多。 与其他的外部自然事件一样,我国核电厂厂址设计基准地震的确定,采用了国际上最严格的标准。到目前为止,我国各拟建内陆核电项目的建设单位均十分注意将核电厂址选择在地震活动性水平较低的地区,设计基准地面地震动参数(SL-2)值低于0.2g,而我们设计采用的为0.3g,有很大裕量。 我国内陆核电厂的防洪设计采用国际上最严格标准,设计基准洪水位确定时考虑各种洪水事件组合,选取其中最大的洪水位来确定厂址的设计基准洪水位。各拟建内陆核电厂址按照洪水事件组合确定设计基准洪水位后,在确定厂坪标高时均采用了“干厂址”的理念,并留有很大的安全裕度,可以确保免受洪水危害。 (3)我国内陆核电厂与放射性污水有关的事故场景分析 我国内陆核电厂采用第三代核电技术,目前可供选择的堆型有AP1000和“华龙一号”。大量的安全论证结果表明,由于这些堆型采取了较为完善的严重事故预防和缓解措施,已经可以实现从设计上消除大量放射性物质释放的可能性。退一万步说,即使发生严重事故工况,安全壳内也可实现堆芯的闭式循环冷却,不会造成大量放射性污水泄漏到环境,环境安全是有保障的。 在实现堆芯闭式循环冷却的场景下,以AP1000机组为例,堆内可能产生的放射性污水量在3800m³的水平。进一步考虑发生极不可能的安全壳少量泄漏情况,应急补水量可能达到20m³/h的水平。由于AP1000机组具有各种缓解措施,可以在几天内恢复安全壳闭式循环冷却。如考虑3天的应急补水,则最终需要处理的总水量为5300 m³;如考虑7天的应急补水,则最终需要处理的总水量为7200m³。这些水量可以贮存在反应堆和核辅助厂房的自由空间内。 我国内陆核电厂,即使考虑了短时间内非闭式循环冷却的极端事故场景,所产生的放射性污水量将在几千m3的水平,远低于福岛核事故产生的放射性污水量。产生这种差别的原因在于我国内陆核电厂采用的压水堆核电厂设计与日本福岛第一核电厂所采用的沸水堆核电厂显著不同。例如,福岛第一核电厂采用Mark I型和Mark II型抑压式安全壳,自由体积分别仅为4280m3和4420m3。在这种安全壳设计中,考虑采用抑压池泄压,但福岛核事故中因长时间失电,通向抑压池的阀门失效,较小的安全壳容积导致其在严重事故工况下失效。我国内陆核电厂采用的压水堆机型具有“大干式”安全壳(AP1000和“华龙一号”安全壳的自由体积分别为58000m3和89000m3),巨大的体积使得其在严重事故工况下具有很好的滞留能力和防氢爆能力。 (4)严重事故工况下环境风险可控 国际核能界在总结福岛核事故教训中均未提出内陆核电厂有危及水资源安全的风险,这表明内陆核电厂对水资源安全的风险属于比各种可信严重事故风险更低的剩余风险。对于核电厂的剩余风险,国际核能界不再在法规、标准中要求设防。 考虑到我国社会公众的关切,内陆核电厂将制定严重事故工况下确保水资源安全的应急预案,确保实现环境风险可控。应急预案中考虑一系列措施,包括:利用安全厂房贮存放射性污水,并配备多台大容量的排放贮罐,作为废液贮存能力的补充或后备;核电厂配备有阻水剂,以在紧急情况下用于泄漏放射性污水的封堵;核电厂地基及基础采用防泄漏设计,进出安全壳的管道均设置双重阀门隔离,并备有放射性污染物抑制剂、沸石过滤装置等,以实现放射性污水与地表水体间的实体隔离;厂区预留空间,以备在紧急情况下安装移动式应急废液处理装置。通过这些措施,即使在极端情况下,亦能确保放射性污水得到贮存、封堵、隔离和处理。 9.与人口分布有关的风险评估与应急计划 《十问》中的第9个问题是:“我国内陆核电站周边人口密度远远高于欧美,安全论证中是如何考虑场外应急的可行性和具体措施的?” 对于这个问题,我们的认识是: (1)内陆核电厂与沿海核电厂的人口分布比较 对于全球范围内211个核电厂的人口分布,已经有学者(杨端节等)进行了比较分析,得出了这些核电厂半径30km和80km范围内的人口数累计频率分布。从中可以看到,分布于人口数较低区间的核电厂(约占90%)中,沿海与内陆核电厂周围的人口相当;分布于人口数较高区间的核电厂(不足10%)中,沿海核电厂周围人口显著高于内陆核电厂。例如,美国沿海的Indian
Point核电厂,半径80km范围内的总人口数达到1700万人(2010年);我国沿海的大亚湾核电基地和秦山核电基地半径80km范围内的总人口数分别为1290万人(2011年)和1580万人(2013年)。从该项研究中可以看到,核电厂周围的人口数和人口密度都是有高有低的。换言之,核电厂址周围一定范围内的人口数和人口密度不完全取决于厂址选择在内陆地区还是沿海地区,还取决于所在地区的经济发达程度和人居环境等因素,因此,笼统地认为,我国内陆地区人口稠密因而建核电厂的风险太高,是有失偏颇的。 王亦楠研究员在《湘鄂赣三省发展核电的安全风险不容低估》一文中,质疑我国湘鄂赣三个内陆核电项目安全风险太高,理由之一是,这三个厂址80km范围的人口分别为738万人、617万人和666万人,人口密度是欧美的4-5倍。在美国确实有许多周围人口较少的内陆核电厂,但也有人口较多的核电厂,例如,Dresdon核电厂和Limerick核电厂半径80km范围内2000年底的总人口分别为734万人和765万人。 (2)内陆核电厂址周围人口分布的评价 国家对核电厂近区范围内的人口数作出限制,旨在发生事故时能有效执行应急响应计划。国家标准《核动力厂环境辐射防护规定》(GB6249-2011)中规定,规划限制区范围内不应有1万人以上的乡镇,厂址半径10km范围内不应有10万人以上的城镇。到目前为止,我国已选的内陆核电厂址可以满足这些要求。 国家标准《核动力厂环境辐射防护规定》(GB6249-2011)中规定,采用事故集体剂量法来评估核电厂址周围80km的人口分布,该准则要求综合考虑厂址周围不同方位和不同距离的人口分布,事故释放量以及一整年的风向、风速和大气稳定度等。到目前为止,利用事故集体剂量法对我国已选内陆核电厂址80km范围的人口分布评价,均能满足该准则的要求。 (3)核电厂应急计划的制定与实施 在应急计划制定与实施要求方面,内陆核电厂与沿海核电厂没有区别。内陆核电厂在应急计划执行范围内除与沿海核电厂那样可能涉及不同省界、地界的行政区划之间的协调外,还可能涉及上下游行政区间的协调。 在我国,应急计划制定与审评、批准是核电厂取得安全许可证的重要条件之一。因此,所有核电厂必须遵循核应急的法规、标准要求,协调解决所有与应急组织和应急响应措施有关的问题。我国沿海核电厂在制定和实施应急计划方面,已经积累了大量的经验反馈,可供内陆核电厂参考。 10.关于核废物处置与核设施退役 《十问》中的第10个问题是:“发达国家频频发生的核废料泄漏事故如何在我国避免?如何攻克‘核设施退役和高放废液处理’的风险隐患?” 对于这个问题,一方面,要指出的是,核废料处置与核设施退役不是内陆核电厂特有的问题,沿海核电厂也必须解决这方面的问题,因此,不能用核废物处置和退役作为反对内陆核电建设的理由。另一方面,核废物处置与核设施退役是核电产业链中的一个重要组成部分,是实现核能可持续发展必须解决的重要问题。据我们所知,国家有关部门和企事业单位在政策制订、科研攻关、设施建设等方面都在按规划进行。当然,其中会遇到不少困难,如高放废物的最终处置,需要我们花大力去攻关。 (1)我国对核电厂放射性固体废物的管理原则 我国对核电厂的放射性固体废物实行分类管理。根据放射性废物的特性及其对人体健康和环境的潜在危害程度,将核电厂的放射性废物分为高水平放射性废物、中水平放射性废物和低水平放射性废物。低、中水平放射性固体废物在符合国家规定的区域实行近地表或地下处置。高水平放射性固体废物实行集中的深地质处置。放射性废物处置是指把废物安放进经过批准的设施中,实行与人类生存环境的安全隔离,确保进入环境的放射性核素的浓度处于可接受的水平。 (2)中低放固体废物处置 核电厂运行产生的浓缩液、废树脂、废过滤器芯以及其它的固体废物,将通过电厂设置的固体废物处理系统进行分类处理。我国新建核电厂按照废物最小化原则,采用最佳可行技术来处理各类废物,一个百万千瓦级的核电机组运行期间中低放射性固体废物年产生量的预期值在50m3以下。 核电厂运行产生的中低放固体废物,先在核电厂的固体废物暂存库贮存一定时间,然后送中低放固体废物处置场处置。我国已在甘肃和广东建造了两个低中放固体废物处置场。实践证明,这种处置场对低中放废物实行安全隔离是有保障的。目前,我国核电厂所在的有关省份也已安排中低放固体废物处置场的规划和选址工作。 (3)我国对于乏燃料后端处理采取的策略 国际上对核燃料后端处理(乏燃料后处理和最终处置)通常有两种策略:一种是将乏燃料(高放废物)暂时贮存后,经过整备后永久处置;另一种是对乏燃料进行后处理,回收其中的铀和钚,并制成MOX燃料提供给反应堆使用。各核电国家按照自身的条件选择处理策略,我国采取对乏燃料进行后处理,回收铀、鈈并加以重复使用的“闭合循环”策略。 乏燃料后处理可以实现资源的充分利用和减轻环境保护负担,有利于放射性废物处置。我国已经有核电厂乏燃料后处理的部署,相关的准备工作(包括设备与技术引进谈判)正在进行中。 目前,我国运行核电厂产生的乏燃料贮存在电厂的乏燃料水池。大亚湾核电厂产生的部分乏燃料已运送甘肃404厂乏燃料后处理中试厂处理。在我国乏燃料后处理厂具备大规模乏燃料处理能力前,各运行核电厂的乏燃料仍将采用电厂就地贮存方式,必要时可在电厂建设独立的乏燃料贮存设施,这种贮存设施在美国已有成熟的建造和运行经验。 (4)核电厂退役 退役是指核电厂安全退出服役,其剩余放射性的水平降低到允许终止国家核安全局发放的核电厂运行许可证。退役涉及移除乏燃料,拆除含有活化产物的系统或部件,从核设施清除或拆除受污染的物质。所有活化的物质,通常从厂址移走,装运至废物处理、贮存或处置设施。 目前,在核电厂安全分析报告评审中,国家核安全局已要求核电厂营运单位提出有关核电厂退役的设想与安排。各核电厂从投入运行开始的第一年就按照国家财政部的规定提取退役基金,因此,核电厂退役经费是有保障的。 在退役技术研究方面,我国正在积极开展相关的国际合作。例如,中核集团与英国国家核实验室于2015年10月18日签署了《成立中英联合研究与创新中心联合声明》,这个研究中心研发的内容包括了核设施退役的研究开发。 11.关于长江流域的核电布局 王亦楠研究员在《十问》中还对核电“安全发展”提出了5点政策建议,在《长江流域建核电站要慎重》中提出了3点政策建议,提出要将长江流域划分为内陆核电厂的“禁区”,这无疑是夸大了内陆核电厂的风险,将会对我国内陆核电发展的布局和安排产生重大的不利影响。 由于长江流域在我国国民经济、生态与环境方面占有十分重要的地位,所以中央在长江流域发展核电问题上持十分慎重的态度,这是十分正确的,这充分体现党中央、国务院对人民、对社会高度负责。国家有关政府部门也从我国长远的能源供应安全、改善能源结构、改善日益恶化的生态环境、满足区域经济发展对能源迫切需求出发,在过去十多年对包括长江流域在内的内陆核电发展作了大量的前期准备工作,组织中国工程院、有关研究单位、企业集团开展我国内陆地区安全发展核电可行性的深入研究和再研究,结论是正面的、积极的。特别是“两湖一江”地区,由于缺煤少气,严重制约社会经济的发展,国家有关部门在充分调查,反复论证的基础上,把它放在了优先发展的地位,批准开展前期工作。我们认为长江流域有其地域的特殊性,但不能因此就将其简单地列入内陆核电建设的禁区。我们不仅要牢记历史上三大核事故给人类带来的不幸,也要充分注意到三大核事故产生的技术背景(这些反应堆都是上世纪70年代的产品,限于当时技术水平,设计本身就存在缺陷等等)以及事故后包括我国在内的国际核能界在提高核电安全性上所作的不懈努力和取得的重大成果。基于早期人们对核电的认识,在安全方面人们把注意力集中在一系列设计基准事故的预防上,而对严重事故的发生缺乏足够的认识,更少在预防和缓解措施上下功夫。人们都是在挫折与失败中积累经验和总结教训。所以在过去20多年,国际核能界在严重事故的预防和缓解问题上下足了功夫,采取的一系列经过了科学的论证和严格的试验的措施,极大地提高了核电厂的安全水平。在核设施的应急响应方面国家也十分重视,应急响应能力得到很大的提升,最近发布的中国核事故应急白皮书也充分反映了这一点。上述这些都充分体现在AP1000和“华龙一号”设计当中,也体现在内陆核电的厂址选择当中。尽管如此,我们仍不能说“绝对安全”(客观上也不存在绝对安全,安全只反映在一定条件下人们对风险的可接受水平)。但我们可以说,即使发生了极不可能发生的严重事故,基于目前的设计和管理水平,我们完全有能力把事故控制在核电站的厂区以内,不会对外部环境造成不可接受的影响,确保公众和环境的安全。 基于以上认识,我们建议有关政府部门: (1)不要简单地把长江流域划为核电禁区; (2)在作好充分论证和技术准备的基础上,把内陆核电纳入“十三五”核电发展规划,稳扎稳打,项目成熟一个,推出一个,发展初期不在数量上和速度上追求目标; (3)核电厂址是国家的宝贵稀缺资源,对于条件好的内陆厂址要积极加以保护。
|
Powered by Discuz! X3.2 © 2001-2013 Comsenz Inc.